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Abstract

Purpose – The purpose of this paper is to investigate a combined bioconvection and thermal
instability problem in a horizontal layer of finite depth with a basic temperature gradient inclined to
the vertical. The basic flow, driven by the horizontal component of temperature gradient, is the
Hadley circulation, which becomes unstable when the vertical temperature difference and density
stratification induced by upswimming of microorganisms that are heavier than water become
sufficiently large.
Design/methodology/approach – Linear stability analysis of the basic state is performed; the
numerical problem is solved using the collocation method.
Findings – The steady-state solution of this problem is obtained. Linear stability analysis of this
steady-state solution for the case of three-dimensional disturbances is performed; the numerical
problem is solved using the collocation method. The stability problem is governed by three Rayleigh
numbers: the bioconvection Rayleigh number and two thermal Rayleigh numbers characterizing
temperature gradients in the vertical and horizontal directions, respectively.
Research limitations/implications – Further research should address the application of weakly
non-linear analysis to this problem.
Practical implications – The dependence of the critical bioconvection Rayleigh number on the two
thermal Rayleigh numbers and other relevant parameters is investigated.
Originality/value – This paper presents what is believed to be the first research dealing with the
effect of inclined temperature gradient on the stability of bioconvection in a suspension of gyrotactic
microorganisms.
Keywords Convection, Temperature distribution, Microorganisms, Flow
Paper type Research paper
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Nomenclature

a radius of a cell (which is approximated
as a spheroid)

B gyrotactic orientation parameter
defined by Equation (14)

D diffusivity of microorganisms

g gravity

G gyrotaxis number, G ¼ BD/H2

h displacement of the center of gravity
from the geometrical center of the cell

H depth of the horizontal fluid layer
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981714).



HFF
20,1

112

~jj total flux of microorganisms
due to macroscopic convection of
the fluid, self-propelled swimming
of microorganisms, and
diffusion of microorganisms,
~nn~vvþ nWcp̂p� Dr~nn

k, l dimensionless wavenumbers in the
x- and y-directions

k̂k vertically upward unit vector

m dimensionless wavenumber,
m2 ¼ k2 þ l2

mc mass of a microorganism

n dimensionless number density of
motile microorganisms, � ~nn

~nn number density of motile
microorganisms

�nn dimensionless average number
density of microorganisms in the
fluid layer

p excess pressure (above hydrostatic)

p̂p unit vector indicating the
direction of microorganisms’
swimming

Pe bioconvection Péclet number,
Pe ¼WcH=D

Pr Prandtl number, Pr ¼ �=��w

RaB bioconvection Rayleigh number,
RaB ¼ gH 3���=�D

RaH horizontal thermal Rayleigh
number, RaH ¼ g�H 4�H�w=��

RaV vertical thermal Rayleigh number,
RaV ¼ g�H 3�T�w=��

Sc Schmidt number, Sc ¼ �=D�w

t dimensionless time,~tt�=�H 2

~tt time

T dimensionless temperature,
~TT � ~TT0=�T

~TT temperature
~TT0 ambient temperature

�T temperature difference between
the lower and upper surfaces

~uu; ~vv; ~ww velocity components,
respectively~xx; ~yy; ~zz

Us, Vs, Ws x-, y-, z-components of the
dimensionless steady-state
velocity, ð ~UUsH�=�Þ;
ð~VVsH�=�Þ; ð ~WWsH�=�Þ,
respectively

~UUs; ~VVs; ~WWs ~xx-; ~yy-; ~zz-components of the
steady-state velocity,
respectively

~vv fluid convection velocity
vector ð~uu; v; ~wwÞ

Wc average microorganisms’
swimming velocity relative
to the fluid

~xx; ~yy; ~zz Cartesian coordinates (~zz is
the upward vertical
coordinate)

x, y, z dimensionless Cartesian
coordinates, ~xx=H ;~yy=H , and
~zz=H , respectively

Greek symbols

� thermal diffusivity of the
suspension

� volumetric expansion
coefficient of the fluid

�H horizontal temperature
gradient

�� density difference, �� ¼ �cell

��w

� parameter defined by
Equation (25)

" small dimensionless
perturbation amplitude

� average volume of a
microorganism

� rescaled dimensionless
amplitude of temperature,
��Tð�w=��Þ�

� dynamic viscosity

� integration constant
defined by Equation (17)
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	 parameter defined by
Equation (24)

�w density of water

�cell density of cells


 dimensionless disturbance
frequency

� dimensionless amplitude of the
vertical disturbance velocity,
� PeScW

� dimensionless amplitude of the
horizontal disturbance velocity,
� PeScU

# angle between vector p̂p and the
positive direction of the vertical axis z

� angle between vector p̂p and the
positive direction of the horizontal
axis x

Subscript

s steady-state

Superscript

* perturbation value

1. Introduction
Bioconvection is the macroscopic fluid motion resulting from a complex interaction of
phenomena characterized by different length scales. The process is driven by the
upswimming of self-propelled microorganisms that are denser than water; the
upswimming of each microorganism is a mesoscale phenomenon. The macroscopic
density gradient caused by this upswimming induces convection instability that
results in the formation of periodic falling plumes in the fluid. The theory of
bioconvection was introduced by Childress et al. (1975); significant progress in stability
analysis and numerical investigation of bioconvection patterns caused by gyrotactic
microorganisms was made in Pedley et al. (1988), Hill et al. (1989), Pedley and Kessler
(1992), and Ghorai and Hill (1999, 2000).

As explained in Hill and Bees (2002), many species of algae tend to swim upwards in
otherwise still water because they are bottom-heavy. Once bioconvection develops, the
local shear flow imposes a viscous torque on the cell tipping it away from the vertical,
which in turn generates a counterbalancing gravitational torque (because the alga cell
is bottom-heavy). These two competing torques impose a bias on the cell’s random
motion; this behavior was termed gyrotaxis by Kessler (1984).

Recently, Bearon and Grünbaum (2006) extended the theory of bioconvection by
considering the environment with salinity stratification; they investigated
bioconvection in a deep chamber with a stable linear salinity gradient. Kuznetsov
(2005a, b, c, 2006a, b) and Nield and Kuznetsov (2006) introduced the theory of bio-
thermal convection. Alloui et al. (2005) numerically investigated bioconvection of
gravitactic microorganisms in a vertical cylinder, Alloui et al. (2006, 2007) presented
numerical simulations and linear stability analysis of bio-thermal convection
associated with heating or cooling from below. Ghorai and Hill (2007) extended the
analysis of bioconvection plumes to three dimensions; they studied the structure and
stability of a three-dimensional plume in a deep rectangular box with stress-free
sidewalls.

Weber (1973, 1978) pioneered the investigation of the stability problem for
convection induced by the inclined temperature gradient. Nield (1994a) reformulated
the linear stability analysis for the inclined temperature gradient problem to allow for
any value of the Prandtl number. Recent advances in convection problem associated
with an inclined temperature gradient are documented in Kaloni and Lou (2002, 2005),
who considered extensions of this problem to Oldroyd-B and viscoelastic fluids; and
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Shklyaev and Nepomnyashchy (2004), who studied the stability of thermocapillary
flows generated by an inclined temperature gradient.

The purpose of this study is to investigate a combined bioconvection and thermal
instability problem in a horizontal layer of finite depth with a basic temperature
gradient inclined to the vertical, so that the basic flow (driven by the horizontal
component of temperature gradient) is a single cell – the Hadley circulation. A similar
problem for the suspension of oxytactic motile microorganisms has been recently
investigated in Avramenko and Kuznetsov (n.d.). The purpose of this paper is to extend
the research of Avramenko and Kuznetsov (n.d.) to investigate the case of gyrotactic
microorganisms, such as many species of algae.

2. Governing equations
The model for bioconvection used in this study is based on that presented in Pedley
et al. (1988) and Hill et al. (1989). This model is supplemented by an energy equation
and a buoyancy term in the momentum equation that results from the inclined
temperature gradient. It is assumed that heating due to the inclined temperature
gradient is sufficiently weak, so it does not kill microorganisms and does not affect
their gyrotactic behavior. The geometry of the problem is similar to that considered in
Nield (1994a) (see Figure 1). The suspension of gyrotactic microorganisms is confined
in a shallow horizontal box with small height-to length and height-to-width aspect
ratios. The two horizontal walls of the box are at a distance H apart. A Cartesian
coordinate system ð~xx; ~yy; ~zzÞ (with the ~zz-axis vertically upward) is chosen such that its
origin is in the middle of the box. A linear horizontal temperature gradient is imposed
in the ~xx-direction, and a constant temperature difference is imposed between the two
horizontal walls. The situation described above can be realized in a carefully planned
lab experiment. The Boussinesq approximation is utilized. Under these assumptions,
the governing equations can be presented as

�w
@~vv

@~tt
þ ð~vv � rÞ~vv

� �
¼ �rpþ �r2~vvþ k̂kðn���g � �wg�ð~TT � ~TT0ÞÞ ð1Þ

divð~vvÞ ¼ 0 ð2Þ

Figure 1.
Definition sketch
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@~nn

@~tt
þ ð~vv � rÞ~nn ¼ �divð~nnWcp̂p� Dr~nnÞ ð3Þ

@ ~TT

@~tt
þ ð~vv � rÞ~TT ¼ �r~TT ð4Þ

where D is the diffusivity of microorganisms (this assumes that all random motions of
microorganisms can be approximated by a diffusive process); � is the thermal
diffusivity of the suspension (assumed to be approximately the same as that of water);
g is the gravity; ~nn is the number density of motile microorganisms; ~TT is the
temperature; ~TT0 is the ambient temperature; p is the excess pressure (above
hydrostatic); k̂k is the vertically upward unit vector, p̂p is the unit vector indicating the
direction of microorganisms’ swimming; ~tt is the time; ~vv is the fluid convection velocity
vector with components ~uu; ~vv; ~ww; Wcp̂p is the vector of average swimming velocity
relative to the fluid (Wc is assumed to be constant); � is the average volume of a
microorganism; � is the dynamic viscosity, assumed to be approximately the same as
that of water; �� ¼ �cell � �w is the density difference; �w is the density of water; and
�cell is the density of cells.

3. Boundary conditions
As in Nield (1994a), the ratio of the height to the length of the layer is assumed to be
sufficiently small so that fluid motion in the horizontally central part is not affected by
lateral end effects.

At the bottom of the layer (assumed to be rigid, impermeable to microorganisms,
and at a constant and uniform temperature), the following conditions are satisfied:

~vv ¼ 0; ~TT ¼ ~TT0 þ
�T

2
� �H~xx; ~jj � k̂k ¼ 0 at ~zz ¼ �H

2
ð5Þ

where �H is the constant horizontal temperature gradient and ~jj ¼ ~nn~vvþ nWcp̂p� Dr~nn
is the total flux of microorganisms due to macroscopic convection of the fluid, self-
propelled swimming of microorganisms, and diffusion of microorganisms.

The upper surface of the layer is assumed rigid as well because, according to Hill
et al. (1989), even if it is open to the air, microorganisms tend to collect at the surface
forming what appears to be a packed layer, and it is unlikely that the upper boundary
is ever fully stress free. The upper boundary is also assumed impermeable to
microorganisms and at a uniform temperature. Under these assumptions, the
boundary conditions at the upper surface of the layer are:

~vv ¼ 0; ~TT ¼ ~TT0 �
�T

2
� �H~xx; ~jj � k̂k ¼ 0 at ~zz ¼ H

2
ð6Þ

4. Steady-state solution
From Equations (1)-(4) and the fact that the layer is infinite in the horizontal directions
it follows that at steady state the number density of microorganisms, ~nns, is a function of
the vertical coordinate only; under this condition the steady-state solutions for the
temperature and velocity components are, respectively (Nield, 1994a):
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Ts ¼ �z� Ra2
H

RaV
xþ Ra2

H

5; 760RaV
ð7z� 40z3 þ 48z5Þ ð7Þ

Us ¼
RaH

24Pr
ðz� 4z3Þ; Vs ¼Ws ¼ 0 ð8Þ

where the dimensionless coordinates, steady-state temperature, and velocity components
are defined by the following equations, respectively:

z ¼ ~zz=H ; x ¼ ~xx=H ; Ts ¼
~TTs � ~TT0

�T
; Us ¼

~UUsH�

�
; Vs ¼

~VVsH�

�
; Ws ¼

~WWsH�

�

ð9Þ

and the vertical thermal Rayleigh number, horizontal thermal Rayleigh number, and
Prandtl number are defined, respectively, as

RaV ¼
g�H 3�T�w

��
; RaH ¼

g�H 4�H�w

��
; Pr ¼ �

��w
ð10Þ

The steady solution for the number density of microorganisms is obtained from the
following equation (which follows from Equation (3)):

nsPepz �
@ns

@z
¼ 0 ð11Þ

where Pe ¼WcH=D is the bioconvection Péclet number, ns ¼ � ~nns and p̂pz is the
z-component of vector p̂ps. Using the results obtained in Ghorai and Hill (1999), at steady-
state p̂pz is given by

p̂pz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� GSc

@Us

@z

� �2
s

; GSc
@Us

@z

����
���� � 1

0; GSc
@Us

@z

����
���� > 1

8>>><
>>>:

ð12Þ

where

G ¼ BD

H 2
; Sc ¼ �

D�w
ð13Þ

are the gyrotaxis and Schmidt numbers, respectively, and

B ¼ 4�� a3

mcgh
ð14Þ

is the gyrotactic orientation parameter introduced in Pedley and Kessler (1987) (it
quantifies the time scale for the reorientation of the microorganisms by the
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gravitational torque against viscous resistance), where mc is the mass of a
microorganism, a is the radius of a cell (which is approximated as a spheroid; this is a
good approximation, for example for many algal cells such as Chlamydomonas,
Ghorai and Hill, 1999), and h is the displacement of the center of gravity from the
geometrical center of the cell.

Accounting for Equations (8) and (12), the solution of Equation (11) is

nsðzÞ ¼ � exp Pe

ðz

�1=2

p̂pzð̂zzÞdẑz

 !
ð15Þ

Since under realistic conditions the horizontal temperature gradient is expected to be
small (otherwise the temperature will kill microorganisms), the vorticity of the steady-
state horizontal flow induced by this temperature gradient is also expected to be small
and the condition jGScð@Us=@zÞj � 1 is expected to hold in Equation (12). In this case
the integral on the left-hand side of Equation (15) is expressed through elliptic integrals
(see Equation (A1) in the Appendix).

The integration constant � in Equation (15) is related to the dimensionless average
concentration of microorganisms in the fluid layer, �nn, as

�nn ¼
ð1=2

�1=2

nsðzÞdz ¼�
ð1=2

�1=2

exp Pe

ð�
�1=2

p̂pzðzÞdz

 !
dz ð16Þ

The integration constant is then given by

� ¼
�nnð1=2

�1=2

exp Pe

ðz

�1=2

p̂pzðzÞdz

 !
dz

ð17Þ

Figure 2a displays the vertical projection of the unit vector p̂p indicating the direction
of microorganisms’ swimming for different values of parameter S2 (parameter S is
defined in Equation (A2) in the Appendix). It is evident that for no horizontal
temperature gradient (S2 ¼ 0) at steady-state (zero flow velocity, zero vorticity)
microorganisms swim strictly vertically. The horizontal temperature gradient results
in steady-state flow changing to Hadley circulation (given by Equation (8)), the non-
zero vorticity of the basic flow reorients microorganisms’ swimming direction; this
decreases the vertical projection of vector p̂p. Figure 2a also shows that
microorganisms swimming direction is not constant; it depends on the vertical
position. At two locations (approximately at z ¼ �0:29) the microorganisms swim in
the strictly vertical direction independent of the value of parameter S. The largest
deviation from vertical upswimming is observed at the bottom and at the top of the
fluid layer (at z ¼ �0:5 at S2 ¼ 0.25 the swimming direction becomes almost
horizontal); also, some significant deviation from vertical occurs in the center of the
layer, at z ¼ 0. These positions correspond to locations where microorganisms’
swimming direction is reoriented most markedly by the viscous torque imposed by
the local shear flow.

Figure 2b displays steady-state distributions of microorganisms’ number density.
For S2 ¼ 0 the number density of microorganisms at the top of the layer (at z ¼ 0.5) is
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the largest. Since the horizontal steady-state flow results in a non-zero vorticity that
reorients the direction of swimming of microorganisms from strictly vertical, the
magnitude of microorganisms’ vertical velocity component resulting from their self-
propelled motion becomes smaller as S2 increases; this reduces the concentration of
microorganisms in the upper portion of the fluid layer. This in turn decreases the
density gradient and makes the suspension more stable. This prediction is confirmed
later on by the stability analysis (see the discussion of Table III in Results and
discussion concerning the effect of RaH).

5. Linear stability analysis
The perturbations are introduced as follows:

Figure 2.
Effect of the vertical
position in the layer at
steady state on the
vertical projection of the
unit vector p̂p indicating
the direction of
microorganisms’
swimming (a) and on
distributions of
microorganisms’ number
density (b)
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½n;T; v; p; p̂p� ¼ ½nsðzÞ;Tsðx; zÞ; vsðUsðzÞ; 0; 0Þ; psðzÞ; p̂psðzÞ�
þ "½n�ðt; x; y; zÞ;T�ðt; x; y; zÞ; v�ðu�ðt; x; y; zÞ;

v�ðt; x; y; zÞ;w�ðt; x; y; zÞÞ;P�ðt; x; y; zÞ; p̂p�ðt; x; y; zÞ�
ð18Þ

where " is the small dimensionless perturbation amplitude, y ¼ ~yy=H , and

t ¼
~tt�

�H 2
ð19Þ

is the dimensionless time.

According to Pedley et al. (1988):

p̂p ¼ ðsin# cos�; sin# sin�; cos#Þ ð20Þ

where # is the angle between vector p̂p and the positive direction of the vertical axis z

and � is the angle between vector p̂p and the positive direction of the horizontal axis x.

Angle # is represented as

# ¼ #0ðzÞ þ "#�ðt; x; y; zÞ ð21Þ

where #0 is the angle between the vector of microorganisms’ average swimming

velocity and the positive direction of the vertical axis z for the case with no

bioconvection (if horizontal temperature gradient is absent, as in the situation

considered in Pedley et al. (1988), #0 ¼ 0) and #� represents the difference between the

actual swimming direction and the swimming direction without bioconvection (thus #�

is the perturbation in the swimming direction induced by bioconvection).

Using Equation (21), Equation (20) is recast as follows:

p̂p� ¼ ð#� cos#0 cos�; #� cos#0 sin�;�#� sin#0Þ ð22Þ

Following Pedley et al. (1988) and eliminating � the equation for p̂p� is recast as

p̂p� ¼ GScð� cos#0;�	 cos#0;�ð�2 þ 	2Þ1=2 sin#0Þ ð23Þ

where, for a spherical cell,

	 ¼ @w�

@y
� @v�

@z
ð24Þ

� ¼ � @w�

@x
þ @u�

@z
ð25Þ

As one can see from (23), the z-component of vector p̂p� depends non-linearly on the

perturbation parameters 	 and �. Expanding the square root ð�2 þ 	2Þ1=2 in Taylor

series leads to the following approximation:
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f ð�; 	Þ ¼ ð�2 þ 	2Þ1=2 ¼ f ð0; 0Þ þ @f

@�

����
ð�¼0;	¼0Þ

� þ @f

@	

����
ð�¼0;	¼0Þ

	 þ Oð�2; 	2Þ

¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	2

p
 !

ð�¼0;	¼0Þ

� þ 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	2

p
 !

ð�¼0;	¼0Þ

	 þ Oð�2; 	2Þ
ð26Þ

The determination of coefficients in the linear terms in Equation (26) requires obtaining
the following limits:

lim
�!0
	!0

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	2

p and lim
�!0
	!0

	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	2

p ð27Þ

In order to calculate these limits, it is assumed that � and 	 approach zero at the same
rate; in this case Equation (23) can be recast as

p̂p� ¼ GSc � cos#0;�	 cos#0;�ð� þ 	Þ sin#0=
ffiffiffi
2
p� �

ð28Þ

The substitution of Equations (18) into the dimensionless version of Equations (1)–(4)
and linearizing results in the following equations for perturbations:

@u�

@t
þ Us

@u�

@x
þ w�

@Us

@z
¼ � @p�

@x
þr2u� ð29Þ

@v�

@t
þ Us

@v�

@x
¼ � @p�

@y
þr2v� ð30Þ

@w�

@t
þ Us

@w�

@x
¼ � @p�

@z
þr2w� � RaB

Sc

n�

�
þ RaV

Pr
T� ð31Þ

rv� ¼ 0 ð32Þ
@n�

@t
þ Us

@n�

@x
þ w�

@ns

@z
¼ �div½nsPep̂p� þ n�Pep̂ps � Sc�1rn�� ð33Þ

@T�

@t
þ Us

@T�

@x
þ w�

@Ts

@z
¼ Pr�1r2T� ð34Þ

where

RaB ¼
gH 3���

�D
ð35Þ

The stability of linear differential Equations (29)–(34) is examined in terms of
individual Fourier modes:

½n�ðt; x; y; zÞ;T�ðt; x; y; zÞ; v�ðu�ðt; x; y; zÞ; v�ðt; x; y; zÞ;w�ðt; x; y; zÞÞ;P�ðt; x; y; zÞ�
¼ ½NðzÞ;�ðzÞ;VðUðzÞ;VðzÞ;WðzÞÞ;PðzÞ� exp½iðkxþ ly� 
tÞ�

ð36Þ
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where k and l are the dimensionless wavenumbers in the x- and y-directions, and 
 is
the dimensionless disturbance frequency. Substituting Equations (36) into Equations
(29)–(34) results in equations for the amplitudes U, V, W, P, N and �. The elimination
of P and V from these equations for the amplitudes and the utilization of Equations (7),
(8), and (15) gives the following equations for the remaining amplitudes � (� is related
to W by the first equation in (41)), � (� is related to U by the second equation in (41)),
N, and � (� is related to � by the third equation in (41)):

d2

dz2
� m2

k2 � l2
ðm2 þ iðkUs � 
ÞÞ

" #
�

¼ 1

k2 � l2
ik

d3

dz3
� iðk3 þ kðl2 þ iðkUs � 
ÞÞÞ

d

dz
þ l2

dUs

dz

" #
�

ð37Þ

d4

dz4
� ½2 m2 þ iðkUs � 
Þ�

d2

dz2

"

þ m4 þ i m2kUs þ k
d2Us

dz2
�m2


 !" ##
� ¼ m2RaBPeð�� NÞ

ð38Þ

l exp �Pe

ðz

�1=2

p̂pzdz

 !
d2

dz2
� Pe

d

dz
� ðm2 þ iScðkUs � 
ÞÞ

" #
N

¼ l p̂pzð1þ Gm2Þ � i
k� lffiffiffi

2
p G

dpz

dz

2p̂p2
z � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p̂p2
z

p
 !

þ il
k� lffiffiffi

2
p Gp̂pzð1� p̂p2

zÞ
d

dz

"

� lGp̂pz þ
i ffiffiffi
2
p G

dpz

dz

2p̂p2
z � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p̂p2
z

p
 !

d2

dz2
þ i ffiffiffi

2
p Gp̂pzð1� p̂p2

zÞ
d3

dz3

#
�

þ kþ lffiffiffi
2
p G

dpz

dz

2p̂p2
z � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p̂p2
z

p d

dz
� p̂pzð1� p̂p2

zÞ
d2

dz2

" #
�

ð39Þ

d2

dz2
� ðm2 þ iPrðkUs � 
ÞÞ

" #
� ¼ RaV

RaBPe

dTs

dz
� ð40Þ

where

� ¼ �PeScW ; � ¼ �PeScU ; � ¼ ��T
�w

��
�; m2 ¼ k2 þ l2 ð41Þ

Since both the lower and upper boundaries of the layer are assumed rigid, Equations
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(37)–(40) must be solved subject to the following boundary conditions:

� ¼ 0; � ¼ 0;
d�

dz
¼ 0; � ¼ 0; PeN ¼ dN

dz
at z ¼ � 1

2
ð42Þ

� ¼ 0; � ¼ 0;
d�

dz
¼ 0; � ¼ 0; PeN ¼ dN

dz
at z ¼ � 1

2
ð43Þ

6. Numerical method
The collocation method (Fletcher, 1984) is used for obtaining the numerical solution of
the eigenvalue problem for Equations (37)-(40). To estimate the numerical
inaccuracy of the method two different sets of basis functions (satisfying boundary
conditions given by Equations (42) and (43)) are utilized. The first set of the basis
functions is:

�¼
XM
j¼1

aj z2�1

4

� �2j

; �¼
XM
j¼1

bjz z2�1

4

� �2j�1

; �¼
XM
j¼1

cj z2�1

4

� �j

;

N ¼
XM
j¼1

dj 2� 2ðPeþPe2Þ
2þ2PeþPe2

1� z�1

2

� �� �
� 2Pe2

2þ2PeþPe2
z�1
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The second set of the basis functions is:
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The solution of the eigenvalue problem leads to the following dependence for the
bioconvection Rayleigh number:

RaB ¼ RaBðk; l;RaV ;RaH ;Pe;G; Sc;Pr; 
Þ ð46Þ

A neutral stability curve is defined as the locus of points on which the imaginary part
of 
 is equal to zero, where 
 is defined in Equation (36). If the real part of 
 is equal to
zero on the stability curve, the instability is stationary, otherwise it is oscillatory.
Oscillatory instability usually occurs when the instability is caused by two or more
competing processes, one of which is pushing the system away from the basic state
and the other one is trying to return the system back to the basic state (Chandrasekhar,
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1961). Negative values of RaV (as in some cases presented in Table III below)
correspond to negative �T , that is when the upper plate is at a higher temperature
than the lower plate. Without bioconvection, the layer with negative �T would never
become unstable, but upswimming of microorganisms results in two competing effects
in this case: the unstable density stratification due to microorganism’s upswimming
and stable density stratification due to temperature gradient. It is shown in Nield and
Kuznetsov (2006) that such situation may lead to oscillatory instability. However, for all
parameter values utilized in this paper instability is found to be monotonic, that is the
real part of 
 is equal to zero on the stability curve. It remains the subject of further
investigation to analyze whether oscillatory instability is possible at all for this
particular flow situation.

The critical bioconvection Rayleigh number is then obtained as

RaB;cr ¼ minfRaBðk; l;RaV ;RaH ;Pe;G; Sc;Pr; 
i ¼ 0Þg ð47Þ

where 
i is the imaginary part of 
.
Computational results indicate that the minimum of RaB is attained when k! l

(which is equivalent to 
 ¼ k� l ! 0). If k! l, the coefficient by the senior derivative
in Equation (37) approaches zero and Equation (37) becomes singular. To overcome this
singularity the standard perturbation technique presented in Kevorkian and Cole
(1985) is utilized. According to this technique, the inner, z=
, and outer, z, variables are
introduced. The solutions obtained for the inner and outer domains are then matched.
The functions given by Equations (44) and (45) are used as initial approximations in
the numerical implementation of the method.

Test calculations have shown that for M ¼ 200 the difference in RaB,cr resulting
from using different sets of basis functions (given by Equations (44) and (45),
respectively), is found to be less than 0.3 percent for various combinations of
dimensionless parameters in Equation (46).

7. Results and discussion
Typical values of physical parameters for the alga Chlamydomonas nivalis are given in
Table II of Hill et al. (1989) and in Table I of Ghorai and Hill (2000). Table II of Pedley
et al. (1988) presents values for C. nivalis as well as typical parameter ranges for all
gyrotactic microorganisms based on data presented in literature (Kessler, 1986a) and
on observations. In order to estimate dimensionless parameters, the depth of the layer
is assumed to be 6 mm, as in Kessler (1986b). Suspension properties such as density,
viscosity, thermal diffusivity, and thermal expansion coefficient are assumed to be
approximately the same as those for water and taken from tables in Bejan (1995). For
estimating the vertical and horizontal temperature gradients a 10 �C temperature
difference in both vertical and horizontal directions is assumed; the characteristic
length in the horizontal direction is assumed to be 100 mm. The resulting ranges of
dimensionless parameters are summarized in Table I. The values of RaV and RaH given
in Table I should be understood as estimates of the maximum safe values of these
parameters so that the temperature variation does not kill microorganisms; smaller
values of RaV and RaH can be easily realized in a lab experiment. The value of RaB can
be also varied from that given in Table I by changing the average concentration of
microorganisms.

All obtained computational results indicate that the minimum of the function RaB

(as defined by Equation (47)) occurs at k ! l (
! 0). For all cases the minimum of the
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function RaB lies in the following range of wavenumbers: k ¼ l ¼ 0.13-2.24. This
means that the minimum is attained not for a single wavenumber mcr (m is defined by
third equation in (41)), but for a range of wavenumbers for which k ¼ l (the range of k
and l is given above). For this reason, the critical wavenumber mcr is not given in
Tables II–VI.
Table II shows the effect of the Péclet number. These results are obtained for the
following dimensionless parameters values: RaV ¼ RaH ¼ 100, G ¼ 0.01, and
Pr ¼ Sc ¼ 1. The results indicate that increasing the bioconvection Péclet number
leads to the decrease of the bioconvection Rayleigh number. This means that the
system becomes less stable, which is as expected because larger bioconvection Péclet
number means that the suspension consists of faster swimming microorganisms.

Table II.
The effect of the
bioconvection Péclet
number on the critical
bioconvection Rayleigh
number

Pe 0.2 0.5 1 2 5

RaB,cr 8,268 1,738 724 437 316

Notes: RaV¼RaH ¼ 100, G ¼ 0.01 and Pr ¼ Sc ¼ 1

Table I.
Values of dimensionless
parameters

Parameter Definition Range or typical value

Sc
�=�w

D
2-200

Pr
�=�w

�
2.5-11

Pe WcH
D

0-20

RaV

g�H 3�T�w

��
138,000

RaH

g�H 4�H�w

��
1,380

G
BD

H 2
1/Pe2

RaB

gH 3���

�D
¼ gH 3

ð�=�wÞD
��

�w

�nn Pe

expðPeÞ � 1
28,000

Table III.
The effect of the vertical
and horizontal Rayleigh
numbers on the critical
bioconvection Rayleigh
number

RaV RaH �500 �200 �100 0 100 200 500

0 RaB,cr 756 749 739 728 715 693 623
100 RaB,cr 766 757 749 738 724 707 642
200 RaB,cr 793 782 776 768 759 748 707
500 RaB,cr 941 940 939 938 937 936 933

Notes: Pe ¼ 1, G ¼ 0.01 and Pr ¼ Sc ¼ 1
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Faster swimmers increase the unstable density stratification in the layer; this results in
a less stable suspension. The similar effect of Pe is observed in a layer subjected to a
vertical temperature gradient alone (Kuznetsov, 2005b; Alloui et al., 2007) in
suspensions of oxytactic and negatively gravitactic microorganisms, respectively,
which indicates certain similarities between suspensions of microorganisms exhibiting
different behaviors (negative gravitaxis, gyrotaxis, and oxytaxis). The critical
wavenumber also decreases as Pe increases, which happens because the vortex size of
the perturbation flow (which is inversely proportional to the wavenumber) grows with
the increase of the Péclet number. This is related to the increasing size of the physical
system (Pe ~ H).

Computational results presented in Table III demonstrate the effects of the vertical
and horizontal Rayleigh numbers on the bioconvection Rayleigh number. These results
are computed for Pe ¼ 1, G ¼ 0.01, Pr ¼ 1 and Sc ¼ 1. From Table III it is evident
that for all values of RaH the critical bioconvection Rayleigh number RaB,cr decreases
with the increase of RaV (when RaH is kept constant). A similar trend is observed in
Kuznetsov (2005b) and Alloui et al. (2006, 2007). This happens because increasing RaV

corresponds to increasing the temperature difference between the lower and upper
plates. This induces an additional destabilizing mechanism (in addition to
upswimming of microorganisms) which contributes to unstable density stratification
thus making the suspension less stable. Also, the critical bioconvection Rayleigh
number RaB,cr increases with the increase of RaH (when RaV is kept constant), which
implies that the increase of RaH stabilizes the system. This is explained as follows. The
effect of increasing RaH is to distort the basic temperature profile away from the linear
one, which produces the stabilizing effect because the destabilizing negative
temperature gradient is decreased in magnitude in the bulk of the fluid (Nield, 1994b).
The effect of RaV on RaB,cr becomes less significant with for large values of RaH.

Table IV.
The effect of the

gyrotaxis number on the
critical bioconvection

Rayleigh number

G 0 0.01 0.03 0.05 0.1

RaB,cr 762 724 661 613 566

Notes: RaV¼RaH ¼ 100, Pe ¼ 1 and Pr ¼ Sc ¼ 1

Table V.
The effect of the

Schmidt number on the
critical bioconvection

Rayleigh number

Sc 0.01 0.1 1 10 100

RaB,cr 523 571 724 981 1,344

Table VI.
The effect of the Prandtl

number on the critical
bioconvection Rayleigh

number for positive RaV

(RaV¼ 100)

Pr 0.01 0.1 1 10 100

RaB,cr 1,527 1,056 724 530 547
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Figure 3, which is computed for Pe ¼ 1, G ¼ 0.01, Pr ¼ 1 and Sc ¼ 1 (the same
parameter values as those used for Table III), depicts the effect of RaV on RaB,cr for
different values of RaH. This figure shows that RaB,cr decreases as RaV increases,
which reemphasizes the destabilizing effect of the negative vertical temperature
gradient (when the lower plate is at a higher temperature than the upper plate). Also,
the increase of RaH stabilizes the system; this effect is explained in the previous
paragraph. At RaH¼ 500 the curve is almost flat, which means that the critical
bioconvection Rayleigh number is almost independent of RaV. This happens because at
this value of RaH the destabilizing effect of the negative temperature gradient is almost
balanced by the stabilizing effect of the horizontal temperature gradient.

The effect of the gyrotaxis number G is shown in Table IV; the results are computed
for RaV ¼ RaH ¼ 100, Pe ¼ 1 and Pr ¼ Sc ¼ 1. Increasing G destabilizes the
suspension and the critical bioconvection Rayleigh number decreases; a similar trend is
observed in Nield and Kuznetsov (2006). As it follows from Equation (12), the gyrotaxis
number characterizes the deviation of the microorganism’s swimming direction from
strictly vertical (G ¼ 0 corresponds to negatively gravitactic microorganisms that
swim against the gravity). Childress et al. (1975) established that an infinite uniform
suspension of negatively gravitactic microorganisms (G ¼ 0) is stable in the absence of
cell concentration stratification. Pedley et al. (1988) have shown that under the same
conditions a suspension of gyrotactic microorganisms (G > 0) is unstable. Hence,
gyrotaxis helps the development of convection instability, which is in agreement with
what follows from Table IV.

The effect of the Schmidt number on the critical bioconvection Rayleigh number is
shown in Table V; the results are computed for RaV ¼ RaH ¼ 100, Pe ¼ 1, G ¼ 0.01
and Pr ¼ 1. The increase of the Schmidt number stabilizes the basic flow; the effect is
most pronounced for large values of Sc.

The effect of the Prandtl number on the critical bioconvection Rayleigh number is
opposite to that of the Schmidt number, as shown in Table VI; the results are computed
for RaV ¼ RaH ¼ 100, Pe ¼ 1, G ¼ 0.01, and Sc ¼ 1. The increase of the Prandtl

Figure 3.
Effect of the vertical
thermal Rayleigh number
on the bioconvection
Rayleigh number for
different values of the
horizontal thermal
Rayleigh number
(computed for Pe ¼ 1,
G ¼ 0.01, Pr ¼ 1 and
Sc ¼ 1)
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number destabilizes the basic flow; the effect of the Prandtl number is most
pronounced at low values of Pr. The same trend is observed in Nield (1994a), Kaloni
and Lou (2002, 2005), and Kaloni and Qiao (1996).

8. Conclusions
Linear stability analysis of the combined bioconvection and thermal instability in a
horizontal layer of finite depth with a basic temperature gradient inclined to the
vertical is carried out.

Computational results indicate that the minimum of RaB is attained when k! l,
when the coefficient by the senior derivative in Equation (37) approaches zero and
Equation (37) becomes singular. A perturbation method involving matching the inner
and outer solutions is utilized to overcome this singularity. For all cases the minimum
of the function RaB lies in the following range of wavenumbers: k ¼ l ¼ 0.13-2.24.

The increase of the horizontal thermal Rayleigh number (when the vertical thermal
Rayleigh number is kept constant) stabilizes the basic flow. The effect of increasing the
horizontal thermal Rayleigh number is to distort the basic temperature profile away
from the linear one. Also, the critical bioconvection Rayleigh number RaB,cr increases
with the increase in RaV, which implies that the increase of the vertical thermal
Rayleigh number stabilizes the system.

It is also established that for a certain value of the vertical thermal Rayleigh number
the bioconvection Rayleigh number is independent of the horizontal thermal Rayleigh
number. This happens because at this triple point the unstable density distribution
caused by upswimming of microorganisms is balanced by the stabilizing effect of the
positive temperature gradient (the temperature at the upper plate is higher than the
temperature of the lower plate); this diminishes the effect of the horizontal temperature
gradient.

The increase of the gyrotaxis number is found to destabilize the suspension. The
increase of the Schmidt number stabilizes the basic flow. The increase of the Prandtl
number destabilizes the basic flow.
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Appendix
If vorticity of the steady-state horizontal flow induced by the horizontal temperature gradient is
small, so that the condition jGScð@Us=@zÞj � 1 holds in Equation (12), the steady-state number
density of microorganisms given by Equation (15) can be presented as
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A ¼ S

1� S
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In Equations (A1) and (A2) Eð�jsÞ is the elliptic integral of the second kind, Fð�jsÞ is the elliptic
integral of the first kind, and � is the integration constant defined by Equation (17).
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